

Introduction to Tokamak Operation Scenarios and Development Considerations

Hartmut Zohm

Max-Planck-Institut für Plasmaphysik																	
85748 Garching														•	0 0	•	0
Cormony														•	0 0	0	0
Germany								•	0	•	0	•	0	0	» o	0	0
														•	0 0	0	0
Talk given at ITER International School San Diago 2	E O	9	0	•	0									•	• •	•	0
Talk given at TIER International School, San Diego, 23	5.0	<i>•</i> .	2	JZ	2) 0) 0	•	•	•	•	•	•	•) 0 0 0	0	0
	0.0	0	0	0	0	0 0	0	0	0	0	0	0	0	0 0	0 0	0	0
								0	0	0	0	0	0	0 0	0 0		0

Goal: produce and sustain a burning fusion plasma

,Burning' plasma: Q = $P_{fus}/P_{ext} >> 1 \Rightarrow$ fulfill Lawson criterion nT $\tau_E > 5 \times 10^{21}$ @ 15 keV

- achievable n, T τ_E , and pulse length depend on tokamak operation scenario⁴ (= mode of operation)
- note: here, we use the term ,operation scenario' for the flat-top phase only

What is a ,tokamak operation scenario'?

A tokamak operation scenario is a tokamak discharge state, characterized by

- external control parameters: B_t , R_0 , a, κ , δ , P_{heat} , Φ_D ...
- integral plasma parameters: $\beta = 2\mu_0 /B^2$, $I_p = 2\pi \int j(r) r dr...$
- plasma profiles: pressure $p(r) = n(r)^{*}T(r)$, current density j(r)...

For similar integral plasma parameters, discharge properties can vary significantly

 \rightarrow Tokamak operation scenario best characterized by shape of p(r), j(r)

Link between the current profile j(r) and the safety factor profile q(r)

The radial profile of the toroidal current is directly linked to the radial profile of the safety factor q r'=r

$$q \approx \frac{r}{R} \frac{B_{tor}}{B_{pol}} \propto \frac{r^2}{R} \frac{B_{tor}}{I_p(r)}$$
 where $I_p(r)$ is the total current inside r : $I_p(r) = 2\pi \int_{r'=0}^{r-1} r' dr' j(r')$

(formula only holds for a large aspect ratio torus with cylindrical cross-section)

This dimensionless quantity is very important for MHD stability

• too low q leads to kinking of plasma column

Link between the current profile j(r) and the safety factor profile q(r)

The radial profile of the toroidal current is directly linked to the radial profile of the safety factor q

$$q \approx \frac{r}{R} \frac{B_{tor}}{B_{pol}} \propto \frac{r^2}{R} \frac{B_{tor}}{I_p(r)}$$
 where $I_p(r)$ is the total current inside r : $I_p(r) = 2\pi \int_{r'=0}^{r'=1} r' dr' j(r')$

(formula only holds for a large aspect ratio torus with cylindrical cross-section)

This dimensionless quantity is very important for MHD stability

• too low q leads to kinking of plasma column

Link between the current profile j(r) and the safety factor profile q(r)

The radial profile of the toroidal current is directly linked to the radial profile of the safety factor q r'=r

$$q \approx \frac{r}{R} \frac{B_{tor}}{B_{pol}} \propto \frac{r^2}{R} \frac{B_{tor}}{I_p(r)}$$
 where $I_p(r)$ is the total current inside r : $I_p(r) = 2\pi \int_{r'=0}^{r'=1} r' dr' j(r')$

(formula only holds for a large aspect ratio torus with cylindrical cross-section)

This dimensionless quantity is very important for MHD stability

• too low q leads to kinking of plasma column

What is a ,tokamak operation scenario'?

Tokamak operation scenario best characterised by shape of p(r), j(r)

- pressure profile composed of kinetic profiles $p(r) = n_e(r) T_e(r) + n_i(r) T_i(r)$
- current profile usually parametrised by safety factor q(r)

1) Introduction (just given)

- 2) Optimisation strategies for tokamak plasmas
- 3) Scenarios characterised by j(r) and p(r)
- 4) Scenario access
- 5) Summary

1) Introduction (just given)

2) Optimisation strategies for tokamak plasmas

- 3) Scenarios characterised by j(r) and p(r)
- 4) Scenario access
- 5) Summary

Figure of merit for fusion performance $nT\tau_E$

Aim is to generate power, so

• P_{fusion}/P_{ext} should be high

 $P_{ext} = P_{heat} - P_{\alpha}$ determined by thermal insulation: • $\tau_E = W_{plasma}/P_{heat}$ (energy confinement time)

In present day experiments, P_{heat} comes from external heating systems

•
$$Q = P_{fus}/P_{ext} \approx P_{fus}/P_{heat} \sim (nT)^2/(nT/\tau_E) \sim nT\tau_E$$

In a reactor, P_{heat} mainly by α -(self)heating:

•
$$Q = P_{fus} / P_{ext} = P_{fus} / (P_{heat} - P_{\alpha}) \to \infty$$

(ignited plasma, Q no longer ~ $nT\tau_{\rm E}$)

 \rightarrow Optimising fusion performance means optimizing $nT\tau_E$

Optimising *nT* means high pressure and, for given magnetic field, high $\beta = 2\mu_0 /B^2$ This quantity is limited by magneto-hydrodynamic (MHD) instabilities

'Ideal' MHD limit (ultimate limit, plasma unstable on Alfvén (inertial) time scale ~ 10s of μ s)

• 'Troyon' limit $\beta_{max} \sim I_p/(aB)$, leads to definition of β_N :

 $\beta_N = \frac{\beta}{I_p/(aB)} \propto \beta A q$

- high plasma current beneficial for achieving high β
- at fixed *aB*, shaping of plasma cross section allows higher I_p (low *q* limit, see later)

Optimisation of $nT\tau_E$: resistive pressure limit

In an ideal MHD stable plasma, resistive MHD instabilities may occur, leading to magnetic islands

'Resistive' MHD limit (on local current redistribution time scale ~ 10s of ms)

In an ideal MHD stable plasma, resistive MHD instabilities may occur, leading to magnetic islands

'Resistive' MHD limit (on local current redistribution time scale ~ 10s of ms)

• 'Neoclassical Tearing Mode' (NTM) driven by loss of pressure driven 'bootstrap' current within magnetic island

pressure p(r)

Optimisation of $nT\tau_E$: density limit

Since *T* has an optimum value at ~ 20 keV, *n* should be as high as possible

- density is limited by disruptions due to excessive edge cooling
- *empirical* 'Greenwald' limit, $n_{GW} \sim I_p / (\pi a^2) \rightarrow \text{high } I_p$ helps to obtain high n

N.B.: Operation at $n/n_{GW} > 1$ is possible

Greenwald limit sets a limitation to the edge density, not necessarily the central density

• can be overcome by central fueling ('pellets') or through inward 'pinch' for particles

Optimisation of $nT\tau_E$: confinement scaling

Empirical confinement scalings show linear increase of τ_E with I_p

- note the power degradation (τ_E decreases with $P_{heat}!$)
- 'H-factor' *H* measures the quality of confinement relative to the scaling

BUT: for given B_t , I_p and j(0) are limited by current gradient driven MHD instabilities

Limit to safety factor $q \sim (r/R) (B_{tor}/B_{pol})$

- for q < 1, tokamak unconditionally unstable \rightarrow central 'sawtooth' instability
- for $q_{edge} \rightarrow 2$, plasma tends to disrupt (external kink) limits value of I_p (usually want $q_{edge} \ge 3$)

Tolerable heat flux on components limits power flux across the separatrix

- heat comes down to the divertor in narrow layer of width $\lambda_q \sim cm$
- experimentally, λ_q does not increase with $R \otimes$

Need to dissipate power (additional radiation, charge exchange) before it reaches the target plate

• additional constraint: excessive radiation decreases central

(not addressed in the remainder of the talk, but serious, \rightarrow 2019 IIS)

N.B.: difficult to study in present day devices since exhaust needs high density, current drive needs low density...

Optimising for Q=P_{fus}/P_{ext} drives operational point close to operational limits

Tokamak optimisation: steady state operation

For steady state tokamak operation (100% noninductive), high I_p is not desirable

- external CD has low efficiency (usually less than 0.1 A per W)
- internal bootstrap current high for high $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol} \rightarrow f_{bs} = I_{bs}/I_p = c_{bs} A^{-1/2} \beta_{pol}$

Optimisation strategies for pulsed and steady state scenarios differ

• ideal stability limits ~ β_N , fusion power ~ β^2 , bootstrap fraction ~ β_p

Optimise for fusion power and Q (pulsed tokamak, ITER Q=10):

$$\beta \sim \frac{\beta_N}{Aq} \implies \text{low q operation}$$

Optimise for bootstrap fraction (steady state tokamak, ITER Q=5)

 $\beta_p \sim \beta_N Aq \implies$ high q operation (in conflict with ignition)

 \Rightarrow Steady state tokamak at high *q* strongly profits from higher *H* and β_N :

Fusion 42 (2000) B231.

Optimisation of $nT\tau_E$

Including the steady state constraint emphasizes the β -limit

(and de-emphasizes current limit)

1) Introduction (just given)

2) Optimisation strategies for tokamak plasmas

3) Scenarios characterised by j(r) and p(r)

4) Scenario access

5) Summary

The (low confinement) L-mode scenario

W. Suttrop et al., Plasma Phys. Control. Fusion 39 (1997) 2051

Standard scenario without special tailoring of geometry or profiles

- central current density usually limited by sawteeth
- temperature gradient sits at 'critical value' (see later) over most of profile
- extrapolates to very large (R > 10 m, $I_p > 30$ MA) pulsed reactor

The (high confinement) H-mode scenario

W. Suttrop et al., Plasma Phys. Control. Fusion 39 (1997) 2051

With hot (low collisionality) conditions, edge transport barrier develops when P_{heat} > P_{threshold}

- gives higher boundary condition for 'stiff' core temperature profiles
- global confinement τ_E roughly factor 2 better than L-mode
- extrapolates to more attractive ($R \sim 8$ m, $I_p \sim 20$ MA) pulsed reactor

Mechanism for edge transport barrier formation

- in a very narrow (~1 cm) layer at the edge very high plasma rotation develops ($E = v \times B$ several 10s of kV/m)
- sheared edge rotation tears turbulent eddies apart
- smaller eddy size leads to lower radial transport ($D \sim \delta r^2 / \tau_{decor}$)

Standard H-mode discharge stationary through ELMs

A. Kirk et al., PPCF 2005

Steep edge gradients drive periodic relaxation instability: Edge Localised Modes (ELMs)

• beneficial for particle (impurity) exhaust, but heat pulses challenge divertor components

H-mode scenarios with small or no ELMs

,QH' mode: ELMs replaced by saturated kink

,EDA' mode: ELMs replaced by quasicoherent turbulence

In recent years, several small/no ELM scenarios have been developed

• key: extra pedestal transport that flushes impurities, but keeps pressure below MHD limit

Tokamak optimisation: steady state operation

For steady state tokamak operation (100% noninductive), high I_p is not desirable

- external CD has low efficiency (usually less than 0.1 A per W)
- internal bootstrap current high for high $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol} \rightarrow f_{bs} = I_{bs}/I_p = c_{bs} A^{-1/2} \beta_{pol}$

Optimisation strategies for pulsed and steady state scenarios differ

• ideal stability limits ~ β_N , fusion power ~ β^2 , bootstrap fraction ~ β_p

Optimise for fusion power and Q (pulsed tokamak, ITER Q=10):

$$\beta \sim \frac{\beta_N}{Aq} \implies \text{low q operation}$$

Optimise for bootstrap fraction (steady state tokamak, ITER Q=5)

 $\beta_p \sim \beta_N Aq \implies$ high q operation (in conflict with ignition)

How to maximise the bootstrap fraction – 1-D

Profile shapes p(r) and j(r) affect c_{bs} : $j_{bs} \propto \sqrt{\frac{r}{R}} \frac{\nabla p}{B_{pol}} \propto q \nabla p \implies$ elevate q where p drops

• leads to j(r) being peaked off-axis and q(r) being flat or reversed

Reversed shear – ITB scenario

High bootstrap fraction, but convincing demonstration so far only at high q_{95}

• delicate MHD stability at lower q_{95}

This route is presently followed at high q_{95} (remember $\beta_{pol} \ \beta_N q_{95}$)

Broad current profiles have a low ideal β-limit

...but close-by conducting shell transforms ideal external kink into Resistive Wall Mode (RWM)

- RWM stability determined by non-ideal effects (rotation, fast particle resonances)
 - \Rightarrow still an active area of tokamak physics research

A 'compromise': the hybrid scenario

- robust operation at 4 < q < 5
- confinement (H₉₈) and stability (β_N) improved w.r.t standard H-mode
- q(0) kept above 1 by MHD dynamo (i.e. no sawteeth)

What is a ,tokamak operation scenario'?

Tokamak operation scenario best characterised by shape of p(r), j(r)

- pressure profile composed of kinetic profiles $p(r) = n_e(r) T_e(r) + n_i(r) T_i(r)$
- current profile usually parametrised by safety factor q(r)

1) Introduction (just given)

- 2) Optimisation strategies for tokamak plasmas
- 3) Scenarios characterised by j(r) and p(r)
- 4) Scenario access
- 5) Summary

Actuators (H&CD systems, fueling systems, PF coil system), have limited efficiency:

- external H&CD power should be low in a reactor ($Q = P_{fus}/P_{ext} > 30$), $P_{\alpha} \sim (nT)^2$ dominates
- external CD has low efficiency (usually less than 0.1 A per W)
- PF coils for shaping and position control need to be far from plasma in a reactor

Equally important, the plasma is a nonlinear dynamic system in which p(r) and j(r) interact

- depending on the time history, plasma state can be different for the same actuator values
- aim for a plasma scenario that is in a robust (nonlinear) equilibrium state
- the trajectory towards the equilibrium matters and is subject to optimization!

Access to a tokamak operational scenario is a non-trivial task

Control of the kinetic profiles T(r) and n(r)

Pressure profile determined by heating / fueling profile and radial transport coefficients

- turbulent heat transport leads to 'stiff' temperature profiles (critical gradient length $\nabla T/T$)
- density profiles not stiff due to existence of a (collisionality dependent) 'inward pinch'
- \Rightarrow Controlling transport is crucial to achieving the desired scenario

Control of the kinetic profiles T(r) and n(r)

Stiffness can be overcome locally by sheared rotation

• suppressed turbulence allows edge transport barrier (H-mode) / internal transport barrier (ITB)

Control of the current profile linked to kinetic profile(s)

ohmic current coupled to temperature profile $j(r) \sim T(r)^{3/2} \rightarrow$ inductive component always peaked bootstrap current linked to pressure and current profiles: $j_{bs} \sim (r/R)^{1/2} \nabla p/B_{pol}$

There is hope that stable stationary non-inductive solutions exist...

...but it is a challenging task to produce them at plasma performance sufficient for a reactor

1) Introduction (just given)

- 2) Optimisation strategies for tokamak plasmas
- 3) Scenarios characterised by j(r) and p(r)
- 4) Scenario access
- 5) Summary

Summary

Tokamak scenarios are characterized by a combination of pressure and current profile

- accessing and maintaining scenarios can be challenging due to the nonlinear plasma physics
- control strategies have to be developed to robustly operate the desired scenarrio